
J .  Fluid M P C ~ .  (1996), r d .  321. p p .  235-278 
Copyright (3 1996 Cambridge University Press 

235 

Multi-scalar triadic interactions in differential 
diffusion with and without mean scalar gradients 

By P. K. Y E U N G  
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA 

e-mail: yeung(c?peach.ae.gatech.edu 

(Received 23 October 1995 and in revised form 1 April 1996) 

The spectral mechanisms of the differential diffusion of pairs of passive scalars with 
different molecular diffusivities are studied in stationary isotropic turbulence, using 
direct numerical simulation data at Taylor-scale Reynolds number up to 160 on 1283 
and 2563 grids. Of greatest interest are the roles of nonlinear triadic interactions 
between different scale ranges of the velocity and scalar fields in the evolution of 
spectral coherency between the scalars, and the effects of mean scalar gradients. 

Analysis of single-scalar spectral transfer (extending the results of a previous study) 
indicates a robust local forward cascade behaviour at high wavenumbers, which is 
strengthened by both high diffusivity and mean gradients. This cascade is driven 
primarily by moderately non-local interactions in which two small-scale scalar modes 
are coupled via a lower-wavenumber velocity mode near the peak of the energy 
dissipation spectrum. This forward cascade is coherent, tending to increase the 
coherency between different scalars at high wavenumbers but to decrease it at lower 
wavenumbers. However, at early times coherency evolution at high wavenumbers 
is dominated by de-correlating effects due to a different type of non-local triad 
consisting of two scalar modes with a moderate scale separation and a relatively 
high-wavenumber velocity mode. Consequently, although the small-scale motions 
play little role in spectral transfer, they are responsible for the rapid de-correlation 
observed at early times. At later times both types of competing triadic interactions 
become important over a wider wavenumber range, with increased relative strength of 
the coherent cascade, so that the coherency becomes slow-changing. When uniform 
mean scalar gradients are present, a stationary state develops in the coherency 
spectrum as a result of a balance between a coherent mean gradient contribution (felt 
within about 1 eddy-turnover time) and the net contribution from scale interactions. 
The latter is made less de-correlating because of a strengthened coherent forward 
cascade, which is in turn caused by uniform mean gradients acting as a primarily 
low-wavenumber source of scalar fluctuations with the same spectral content as the 
velocity field. 

1. Introduction 
Efficient mixing is one of the most important characteristics of turbulent flows. As 

pointed out early by Corrsin (1951) and Batchelor (1959), a net effect of advection by 
the turbulent velocity fluctuations is to break concentrated blobs of scalar into smaller, 
more disorganized, fragments. As scalar fluctuations are generated by this process at 
progressively smaller scales, ultimately localized inhomogeneities at the small scales 
accompanied by large spatial gradients are rapidly smeared out by molecular diffusion. 
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Since both velocity and scalar fluctuations span a range of scales (which widens with 
increasing Reynolds and Peclet numbers), turbulent scalar transport is closely related 
to complex couplings between different scales in the hydrodynamic and scalar fields. 

The nature of nonlinear interactions between different scale sizes is a central issue 
in turbulence research, underlying such pivotal concepts as the Kolmogorov (1941) 
similarity hypotheses and local isotropy for turbulence at high Reynolds number. In 
homogeneous turbulence these interactions are conveniently studied using a Fourier- 
spectral approach, in which turbulent fluctuations are decomposed into contributions 
from different scale sizes via a transformation to Fourier (wavenumber) space. The 
role of triadic interactions in energy transfer has recently received considerable 
attention (Domaradzki & Rogallo 1990; Brasseur & Wei 1994; Zhou 1993a,b and 
others), and the implications of the possibility of departures of the small scales from 
local isotropy have been explored by numerical experiments (Yeung & Brasseur 1991; 
Yeung, Brasseur & Wang 1995). 

Extensions of the Kolmogorov hypotheses to the prediction of spectral forms of 
scalar fields (Obukhov 1949 and Corrsin 1951) are well-known, although they are less 
well supported by experiment (Sreenivasan 1991). In contrast to the status of energy 
transfer, the detailed mechanisms of spectral transfer in scalars have been studied 
very little, except for some one-dimensional measurements by Yeh & Van Atta (1973). 
In Fourier space, the nonlinear convective term in the scalar transport equation is 
given by a convolution integral which represents the cumulative effect of triadic 
interactions, where each triad is a closed triangle in wavenumber space consisting of 
two scalar modes coupled via a velocity mode. Using direct numerical simulation 
(DNS) data and an extension of a technique of Domaradzki & Rogallo (1990), Yeung 
(1994) studied the roles of different geometric classes of triadic interactions in the 
spectral transfer of a single passive scalar at Taylor-scale Reynolds number ( R i )  
equal to 38. The main conclusion in Yeung (1994) was that at high wavenumbers 
the dominant process is a local forward cascade in the scalar field driven primarily 
by non-local interactions that couple two scalar modes at similarly high wavenumber 
via a low-wavenumber velocity mode. This spectral space representation is consistent 
with the physical space arguments given by Corrsin (1951) and Batchelor (1959). 

In many practical applications of turbulent mixing, such as simultaneous heat 
and mass transfer in industrial processes and the inter-diffusion of multiple chemical 
species in turbulent flames, more than one scalar is involved. For two-scalar mixing, 
two important simplifications apply in the case of equal diffusivities: (a)  if the scalars 
are non-reacting and passive then each scalar satisfies the same evolution equation 
and linear superposition can be employed, and ( b )  even if the scalars are reacting 
a linear combination of the species concentrations can be found such that they 
are conserved (which constitutes the Shvab-Zeldovich conserved-scalar approach in 
combustion literature). Komori et al. (1991) used a stochastic model to calculate the 
correlation between initially segregated reacting species of equal diffusivities. However, 
the case of multi-scalar mixing with different molecular diffusivities is considerably 
more complex and less understood. The importance of accurately accounting for 
the differential diffusion with different diffusivities in combustion models is now well 
recognized (Bilger & Dibble 1982; Pope 1990). 

Several recent efforts at understanding differential diffusion have been directed 
at the simpler case of passive scalars, with emphasis on evolution from identical 
initial conditions. Direct numerical simulations of differential diffusion for decaying 
scalar fields have been conducted in both stationary (Yeung & Pope 1993) and 
decaying (Nilsen & Kosaly 1996) isotropic turbulence. Saylor & Sreenivasan (1993) 
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performed inert colour dye experiments at high Schmidt number in water jets, and 
found significant effects of differential diffusion even at scales much larger than 
the Batchelor scale. Kerstein, Cremer & McMurtry (1995) also used stochastic 
simulations and a linear-eddy mixing model to investigate the scaling properties of 
differential diffusion, and suggested that the mean-square difference between two 
scalars decreases inversely as the square root of the Reynolds number. In addition, 
Smith ( 1994) performed experiments in both reacting and non-reacting turbulent jets, 
which suggested that high-order statistics sensitive to the small scales may continue 
to be affected by differential diffusion at high Reynolds numbers. 

An important tool used to describe the scale dependency of the correlation between 
multiple scalars is the coherency spectrum, also known as (spectral) coherence. 
Measurements of the coherency spectrum in the frequency domain have been reported 
by Li, Brown & Bilger (1993) for a reactive-scalar mixing layer. The experimental 
results, which agree well with a theory given by Kosaly (1993), indicate that near the 
centreline the scalars are highly correlated at low frequency, but nearly uncorrelated 
at high frequency. Measurements have also been made for a pair of heat sources of 
the same diffusivity, invoking the principle of superposition (Tong & Warhaft 1995). 
Earlier experiments by Sirivat & Warhaft (1982) indicated that the correlation between 
two scalars depends on their initial length scales. However, little is known about 
the behaviour of multi-scalar spectra in the spatial (wavenumber) domain, which 
is required for a quantitative description of the spectral mechanisms of differential 
diffusion. Furthermore, it appears that spectral transfer characteristics (as represented 
by triadic interactions) in the multi-scalar case have not been studied before. 

In the study of differential diffusion, one is interested in joint statistical measures 
between different scalars. Yeung & Pope (1993) found that the correlation between 
the scalars has a strong scale dependence, and furthermore the evolution of the 
spectral coherency is determined directly by triadic interactions representing turbulent 
advection, with only an indirect influence of diffusivity differences. As an effect of 
molecular origin, differential diffusion is indeed observed to arise first at the small 
scales, but, in the absence of influences other than turbulent advection and molecular 
diffusion, is found to ultimately become important at the large scales as well (so that 
the scalars become completely de-correlated). In other words, from a spectral transfer 
point of view, differential diffusion can be thought of as an inverse cascade process in 
which incoherency propagates from the small scales to the large scales. Furthermore, 
one may expect different results if a coherent source of scalar fluctuations is present 
to counteract this inverse cascade. This is indeed the case if uniform mean scalar 
gradients are imposed, whereupon a quasi-steady non-zero asymptotic correlation 
coefficient between the scalars is maintained in time (Yeung & Moseley 1995~).  

In this work, our primary objective is to investigate in detail the roles of different 
geometric classes of triadic interactions involving multiple scalars in the evolution 
of their coherency measured in Fourier space. More comprehensive results are first 
reported for single-scalar transfer at higher Reynolds number (R, up to 160), drawing 
upon a database at higher numerical resolution (up to 256’ grid points in each 
realization) and including the effects of mean scalar gradients. The wider range 
of scales present in the new data allows us to distinguish between the effects of 
‘moderately’ non-local triadic interactions and highly non-local ones. The dynamics 
of spectral coherency is then examined in detail. A primary issue is which triadic 
interactions tend to correlate the scalars (at specified scales), and which interactions 
tend to de-correlate them. Special attention is given, especially at early times, 
to the role of high-wavenumber velocity modes, although they are not active in 
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single-scalar transfer. The mean gradient (when present) contributions to coherency 
evolution are also documented. In nearly all cases ensemble averaging over multiple 
independent realizations have been performed (and are necessary) to ensure reliable 
results. Whereas in this paper we place a strong focus upon the spectral viewpoint, 
some information on spatial structure is also given. 

The remainder of this paper is organized as follows. In $2 we give the basic 
equations defining spectral coherency and its evolution in time. In $3 we give a 
brief overview of the direct numerical simulations conducted including the spatial 
characteristics of the scalar fields, and summarize relevant facts from our recent 
work. The main results are presented in $4, including (a) further results on single- 
scalar transfer, and spectral coherency evolution (b)  without mean scalar gradients 
and (c) in the presence of uniform mean scalar gradients. Conclusions are summarized 
in $5. Numerical issues concerning the extraction of spectral coherency from DNS 
data are addressed in the Appendix. 

2. Spectral equations 
We consider a set of passive scalars in constant-property turbulent flow, allowing 

for the presence of uniform mean scalar gradients. The transport equation for the 
fluctuation 4, of each scalar (from its mean) with molecular diffusivity D, is 

where ui is the velocity fluctuation, and the mean scalar field @, is a prescribed linear 
function of the coordinates. (In this paper Greek subscripts designate individual 
scalars with different diffusivities, and are not subject to the summation convention.) 
In Fourier space, the contribution to the scalar variance from a Fourier mode k 
(with wavenumber magnitude k )  may be written as Eta(k) = ($Jk)$; (k) ) ,  where hats 
denote Fourier coefficients, asterisks denote complex conjugates, and angle brackets 
denote ensemble averages over multiple independent realizations. It is readily shown 
that EtE(k) evolves as 

where the scalar transfer spectrum T,",(k) is given by 

and G$,(k) is proportional to the scalar flux spectrum, as 

Advection of the scalar by the velocity fluctuations is represented in (3) as an 
integral over all triadic interactions coupling $,(k) with one velocity mode iii(p) and 
another scalar mode $,(4), such that the wave-vectors k, p and 4 form closed triangles 
in wavenumber space. In practice, the convolution integral in (3) is evaluated in a 
pseudo-spectral manner, so that the computational effort on an N 3  grid scales as 
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N 3  Inz N .  Spectral quantities are collected into discrete wavenumber shells, as 

T$(k) = c Gw) = CT," , (k ' )  > ( 5 )  
h- 4 Ak<lk'j<k+ $ Ak Ak 

where hereafter the notation xAL is employed as a shorthand for summation over 
a shell of thickness Ak, usually taken to be unity. The transfer spectrum is readily 
decomposed into contributions from velocity and scalar modes in specified scale 
ranges. In particular, the detailed transfer function T&(klp,q) is the partial sum of 
the terms in ( 3 )  over those triads with the velocity mode in a range centred on p ,  
and the other mode centred on q, where p and q are collected into discrete spherical 
shells in the same manner as in ( 5 ) .  Furthermore, the overall effects of velocity modes 
p and other scalar modes q are given respectively by the quantities 

and 
S 9 k l 4 )  = c T$(klP> 4 )  . (7) 

P 
In the multi-scalar case, corresponding spectral equations for the co-spectrum 

E$(k)  = i ( J x ( k ) $ i ( k )  + JI(k)$, j (k))  at a Fourier mode k can be written (Yeung & 
Pope 1993). On the other hand, a more effective indicator of differential diffusion 
in Fourier space is a spectral correlation coefficient. This is formally given by the 
coherency spectrum, which is 

Yeung & Pope (1993) derived an evolution equation for the coherency spectrum in the 
absence of mean scalar gradients, which contains only spectral transfer contributions 
without the explicit appearance of molecular diffusivities. Coherency development 
was represented in terms of spectra and co-spectra collected over discrete wavenumber 
shells. However, for reasons discussed in the Appendix, to study the roles of different 
classes of triadic interactions it is more appropriate, and convenient, to represent 
coherency by averaging over discrete Fourier modes in each shell. We define 

where M ( k )  is the number 
Fourier mode k is given by 

of Fourier modes in a given shell, and r,p at a given 

The quantity r,p(k) defined above has a useful alternative interpretation : namely 
(as is easily seen by writing the Fourier coefficients in polar form) 

r,p(W = cos[&(k) - Op(k)l > (11) 

where 8, and Qp are the phase angles of $,(k)  and $p(k) in the complex plane. That is, 
the spectral coherency between different scalars is a measure of the phase alignment 
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between them in Fourier space. It is also seen from (11) that both r,p(k), and 
hence p,p(k), defined above, satisfy the Schwarz inequality required for correlation 
coefficients. Results on the statistics of phase alignment in Fourier space are included 
in $94.2 and 4.3. 

To present a coherency evolution equation consistent with the above definitions, we 
introduce some shorthand notation here. For example, we denote $,(k)$z(k) by e,,(k), 
which gives the scalar spectral content at the mode k and whose ensemble average 
is just the scalar spectrum E,",(k). Similarly, we define the quantities e,p(k), t,,(k), 
t,p(k), etc., in relation to co-spectra and transfer spectra, and fia(k) = ;[Gi4, + GT$,] 
represents the corresponding contribution to the scalar flux spectrum. From the 
definition (10) and the Fourier transforms of (1) for scalars 4,  and 4 p  an evolution 
equation for the quantity r,p(k) may be derived. After some straightforward algebra, 
the result can be written as 

* *  

where the nonlinear transfer part is given by 

and the mean gradient term is 

Finally, in view of relation (9), we define the coherency evolution spectrum within 
specified wavenumber shells with averaging over the modes in each shell as 

Taken together, relations (12) to (15) display a strong resemblance to (18) of Yeung 
& Pope (1993). Two differences are that (i) results are collected into wavenumber 
shells only at the last step, and (ii) the effects of production of scalar fluctuations 
by uniform mean gradients have been included. The absence of direct effects of 
molecular diffusivities is unchanged. For the mean gradient contributions, it should 
be noted that because the mean gradient term in (1) is linear, if (as in our calculations) 
scalar fluctuations are initially absent but generated directly by mean gradients, the 
effects of mean gradients on the correlation between the scalars are felt only through 
the alignment between the vectors V@, and V@p, but not their magnitudes (Yeung 
& Moseley 1995~). In this case we find that the magnitudes of the mean gradients 
ultimately cancel from the ratio in (14), as long as they are not zero. 

A primary goal in this paper is to quantify the effects of different scales in the 
velocity and scalar fields on the evolution of coherency between different scalars at 
specified scale sizes. This may now be achieved in the framework of this Section 
by decomposing the spectral transfer terms in (13) into contributions from different 
classes of triadic interactions. For example, in analogy to Ti(k lp ,  q),  we decompose 
the spectral transfer effects h$f(k) in h,p(k) into contributions from triads with the 
velocity mode centred on p and the other scalar mode centred on q. That is, 
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and 

h&) = h $ w  + m&) 3 (17) 
where rn,p(k) is obtained from rn,p(k) by averaging over Fourier modes in a given shell 
and over multiple realizations. We also denote by h z j ( k ( p )  and hzp(klq)  respectively 
the overall effects of velocity and scalar modes through the transfer terms. 

3. Simulation overview and scalar statistics 
Direct numerical simulations of the exact three-dimensional time-dependent Navier- 

Stokes and passive scalar transport equations have been conducted using the pseudo- 
spectral algorithm of Rogallo (1981). Because we are interested in locality-non-locality 
issues in wavenumber space, for robust conclusions it is very desirable to have a wide 
range of scales present in the simulations. This provides strong motivation for 
achieving Reynolds numbers as high as current computational resources reasonably 
permit. In this work we have employed a massively parallel implementation (Yeung 
& Moseley 199%) on an 512-node IBM SP that allows the use of more grid points 
by distributing memory among a large number of parallel processors. 

Because we want to focus on the basic physics of the scalars, in this paper 
we consider the simplest turbulent flow possible : namely homogeneous isotropic 
turbulence which is furthermore made statistically stationary in time by numerical 
forcing of the large-scale motions, using the scheme of Eswaran & Pope (1988~). 
The highest Reynolds number reached in the present simulations is 160 based on 
the Taylor scale using a 2563 grid, for which the wall-clock time per time step with 
three passive scalars and 64 parallel processors is only about 15 s. However, since 
multiple 2563 simulations are still expensive, a significant fraction of the results in this 
paper are based on 1283 data at Ri = 90, with simulation parameters corresponding 
to those employed by Yeung & Pope (1989). The computational requirements are 
strongly associated with the need for multiple realizations over long time intervals: 
although a single 2563 simulation (spanning 18 eddy-turnover times in this work) is 
well within our reach, to perform 20 such simulations (if physical conditions do not 
permit time averaging) is still, at present, too expensive. Indeed, computational cost 
has limited some recent 5123 simulations (Jimhez et al. 1993; Wang et al. 1996) to 
relatively short periods of 2 eddy-turnover times or less. 

The characteristics of the velocity and scalar fields in the simulations are summa- 
rized in tables 1 and 2, and in figure 1 which shows the energy and scalar spectra at 
Schmidt numbers ( S c )  of 1/8, 1/4 and 1 in Kolmogorov scaling. The adequacy of 
numerical resolution in the velocity field is measured by the parameter k,,,y, where 
k,,, is the highest resolvable wavenumber on a given grid (allowing for alias error 
control), and y~ is the Kolmogorov length scale. The simulations satisfy the k,,,y 3 1 
criterion proposed by Eswaran & Pope (1988~). However, in our attempt to reach 
higher Reynolds numbers, numerical resolution in the 2563 case has been reduced 
somewhat compared to the 128’ simulations. This is reflected in the turnups in the 
scaled energy spectra shown in figure 1 at the highest wavenumbers, and implies that 
some results at roughly the highest ten wavenumber shells should be treated with 
caution. Scale ratios in table 1 are formed from longitudinal integral length scale 
L 1 ,  eddy-turnover time TE (= L,/u’, where u’ is the r.m.s. velocity fluctuation), and 
the Kolmogorov length and time scales (y, zq) .  It appears that the range of scales 
resolved is just wide enough to sustain a limited inertial range in the energy spectrum, 
indicated by a recognizable plateau in figure 1. 
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FIGURE 1. Time-averaged spectra scaled by the Kolmogorov variables, in Ri. = 160 (2563) simulation, 
for energy (unmarked solid line) and scalars at Schmidt numbers 1/8 (A), 1/4 (0) and 1 (0) with 
uniform mean gradients; dashed line shows energy spectrum at RA = 90 (12g3) for comparison. 
An inertial range in the energy spectrum would be represented by a plateau at intermediate 
wavenumbers of height equalling the Kolmogorov constant. Here E is the energy dissipation rate, v 
is the kinematic viscosity, and za is the dissipation of each scalar &. 

N 64 128 256 
Ri 38 90 160 
kmax 30 60 120 
k m a x v  1.5 1.5 1.2 
L l v  22 56 119 
TE /Gl 7 12 19 

TABLE 1. Numerical resolution and scale ratio information in the numerical simulations. Note that 
this paper reports 1283 and 2563 results, but information on 643 data in Yeung & Pope (1993) and 
Yeung (1994) is included for comparison. 

It should be noted that the 2563 velocity fields simulated in this paper are similar 
in Reynolds number and numerical resolution to that in Vincent & Meneguzzi (1991) 
(RA = 150 on a 2403 grid), who used a different forcing scheme. On the other hand, 
Jimenez et al. (1993) performed highly resolved 2563 simulations with k,,,y = 2, but 
at lower Reynolds numbers. Their results also suggested that approximate inertial- 
range behaviour in the energy spectrum is possible for Ri at 94 and higher. It can 
be estimated that in the case of an equilibrium axisymmetric turbulent jet, if the jet 
diameter is taken as a measure of the large scales and the turbulence intensity is 5%, 
an Ra of 160 corresponds to a mean flow Reynolds number Red of about 34000. This 
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0 2  P3 P4 

Vii4, SC = 1/8 21.98 1.892 14.02 
Vi4, SC = 1/4 44.55 1.896 16.08 

Vld, SC = 1/8 20.07 0.022 11.82 
Vi4, SC' = 1/4 40.88 0.018 13.57 

V,$, s c  = 1 178.5 1.328 14.72 

vig, SC = 1 167.4 0.012 13.01 

TABLE 2. Variance (02), skewness ( p 3 )  and flatness ( ~ 4 )  factors for scalar gradient fluctuations 
parallel (Vll$) and perpendicular (V,$) to the mean gradient in the 2563 R,, = 160 simulation. The 
mean gradient is of unit magnitude. 

is also comparable to the highest value of 64000 reached in the mixing experiments 
of Smith (1994). 

For scalar fields the Schmidt numbers are chosen to give the largest diffusivity 
ratio possible, subject to well-known numerical constraints. In figure 1 it may be 
seen that the scalar at Sc = 1.0 has considerable (more than the velocity field) 
high-wavenumber spectral content, so that its small scales are not very well resolved. 
Fortunately, as demonstrated in $4, this has only a limited impact on the behaviour 
of two-scalar triadic interactions involving high-wavenumber modes in this work. On 
the other hand, scalars of high diffusivity (or low Schmidt number) are dominated 
by the large scales, and consequently subjected to great statistical variability, since 
relatively few samples of the large scales exist in a solution domain of finite size. 

In the absence of mean gradients or other production mechanisms, in stationary 
isotropic turbulence scalar fluctuations decay exponentially in a self-similar manner 
with a constant time scale (Eswaran & Pope 1988b). (It should be noted that in the 
case of decaying isotropic turbulence the time scale depends on length scales of the 
scalar field (Warhaft & Lumley 1978); the possibility of other similarity states has 
been studied Chasnov 1994.) Yeung & Pope (1993) found that, from identical-valued 
initial conditions, the scalars de-correlate rapidly at early times, especially at the 
small scales. However, beyond about two eddy-turnover times, differential diffusion 
becomes a very slow-evolving process, with large statistical variability. Nevertheless, 
the coherency spectrum indicates that ultimately all scales become completely de- 
correlated, effectively simultaneously in time. 

When uniform mean gradients are present, scalar fluctuations are generated by 
velocity fluctuations acting across the mean gradient. If scalar fluctuations are 
initially absent, they become proportional to the mean gradient at all times. An 
approximate balance is reached between mean gradient production and molecular 
dissipation, so that the scalars become statistically stationary. (Such a stationary 
state is, however, not observed if the energy of the turbulence increases in time, for 
example in homogeneous turbulent shear flow (Rogers, Moin & Reynolds 1986).) 
Furthermore, a quasi-steady asymptotic correlation level is maintained (Yeung & 
Moseley 1995a), suggesting that the multi-scalar joint probability density functions 
also become stationary. This is very fortunate, because once stationarity is attained 
time averages may be taken from one realization without the need for many expensive 
simulations. 

In all of our simulations, the probability density functions (PDFs) are found to be 
Gaussian. Other forms of the scalar PDF have been observed in isotropic turbulence: 
for instance, Jayesh & Warhaft (1992) found exponential tails in decaying grid- 
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FIGURE 2. Contours of scalar fluctuations in a selected cross-sectional plane containing the mean 
scalar gradient vector, at RA = 160 for Schmidt numbers 1/8 (a) and 1 (b) .  Positive and negative 
contour levels are denoted by solid and dashed lines respectively, with the zero contour removed 
for clarity. The coordinates x (along the mean gradient direction) and z are scaled by the length of 
the solution domain (LO, = 2n). 
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FIGURE 3. One-dimensional profiles of the total scalar field traversed in the direction of the mean 
gradient, across the position marked by the chain-dashed line in figure 2. Solid and dashed line 
represent scalars at Sc = 1 and 1/8 respectively. 

generated turbulence with an uniform transverse mean scalar gradient. However, 
in numerical simulations it is believed that such exponential tails occur only if the 
integral length scale of the turbulence is much smaller than the size of the solution 
domain (over which periodic boundary conditions are applied). This condition is 
not met in our simulations. The sensitivity of the form of the scalar PDF to initial 
conditions and properties of the velocity field has been investigated recently by Jaberi 
et al. (1995). 

Statistical properties of intermittent scalar gradient fluctuations (with mean gra- 
dient) are similar to results given by Pumir (1994), both in the shape of the PDFs 
(not shown) and in the first few moments, which are listed in table 2. The ‘parallel’ 
component (V, 4) is positively skewed and more intermittent (with higher flatness 
factor) than the perpendicular component (VL@), which has a symmetric PDF. It 
is expected that measures of intermittency, including skewness and flatness, should 
increase with Schmidt number. The apparent departure of the scalar with S c  = 1.0 
from this trend is because (due to limited resolution) its high-order moments are not 
well captured. 

To complement the spectral emphasis in this paper, we discuss briefly the structure 
of scalar fluctuations in physical space in the case with mean gradients, using cross- 
sectional contours of the scalar fluctuations (figure 2a,b) and profiles taken in the 
direction of the mean gradient (figure 3). These results are very similar to those of 
Pumir (1994), with the new observation that the intermittent high-gradient regions 
for two highly correlated scalars (with correlation coefficient about 0.94) are indeed 
well correlated in space. The main difference between figures 2(a) and 2(b) is that, as 
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expected, steeper gradients are found for the less diffusive scalar. The profiles taken 
in figure 3 are of the total scalar field : that is, 6 = 4 + V@ - x. A cliff-like structure is 
seen at locations corresponding to the high-gradient regions in figures 2(a) and 2( b) ,  
consisting of a large jump in 6 (caused by high gradient fluctuation) followed by a 
wide patch of lesser change in 6 (due to negative scalar fluctuations). Steeper cliffs 
are observed for less-diffusive scalars. 

The remarkable closeness between figures 2(a) and 2(b) suggests that the spatial 
structure of scalar fluctuations is largely dictated by the velocity field, independent of 
initial conditions and molecular diffusivity. To test this argument, we have performed 
some simulations in which the scalars are given nearly independent (and non-zero) 
initial conditions. It was found that the large-time asymptotic value of the two-scalar 
correlation is reached within about two eddy-turnover times. In other words, the 
velocity field essentially imposes a large-scale spatial organization on the scalars, 
although the small-scale features are modified by molecular diffusion. 

The results reported by Yeung & Pope (1993) and Yeung & Moseley (1995a) have 
since been further substantiated by calculations at higher Reynolds numbers, and 
by the success of phenomenological models based on the DNS data (Yeung & Luo 
1995). The spectral mechanisms of differential diffusion are investigated in this paper, 
through a detailed analysis of multi-scalar scale interactions. 

4. Results and discussion 
In the three subsections below, we present numerical results from analyses of DNS 

data concerning the detailed characteristics of single-scalar spectral transfer, and the 
role of multi-scalar triadic interactions in Fourier space for differential diffusion with 
and without uniform mean gradients. The physical questions addressed include the 
following : 

First, what are the effects of the presence of a wider range of scales and mean 
gradient production on the spectral transfer of single scalars at different Schmidt 
numbers? Second, what types of triadic interactions are responsible for the rapid 
de-correlation observed at early times observed in differential diffusion? Third, when 
the coherency becomes stationary or slow-changing, what is the nature of the balance 
of processes tending to increase or decrease the coherency at various scales? Finally, 
does mean gradient production provide a strong direct contribution to coherency 
evolution, and/or indirectly modify the spectral transfer contributions so that a 
quasi-steady state is attained? 

4.1. Further results on single-scalar transfer 
Some brief DNS results on single-scalar transfer were previously given in Yeung 
(1994), for a scalar at Sc = 1.0 in self-similar decay in stationary isotropic turbulence 
at R,. = 38 simulated with 643 grid points. We present below more detailed data at 
higher Reynolds numbers with a wide range of scales, including the effects of mean 
gradients and different Schmidt numbers. 

Figure 4 shows, via the transfer function V$(klp), the contributions of velocity 
modes at different scales to the spectral transfer of a scalar at Sc = 1.0 without 
mean gradients, at Rn = 90 on an 1283 grid. In performing ensemble averaging (with 
34 realizations) we note that when the scalar fields are in a self-similar state, the 
shape of the scalar spectrum is statistically the same over time and between different 
realizations. This implies that only the shapes (rather than absolute magnitudes) of 
the spectral transfer functions are of interest. Accordingly, the scalar fluctuations 
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FIGURE 4. Decomposition of the scalar transfer spectrum function T$(k) (dashed line) into contri- 
butions V$(klp) from velocity modes p in the logarithmically spaced ranges A-F, for a scalar with 
Sc = 1.0 and no mean gradient in 128' simulations at R, = 90. The highest resolved wavenumber 
is 60 and the Kolmogorov wavenumber l / q  is 39.5. The inset shows the high-wavenumber part 
magnified. 

in each realization are scaled to yield the same variance (taken to be unity for 
convenience). 

The overall transfer represented by the dashed line in figure 4 is, as expected, from 
the large scales (low wavenumbers) to the small scales (high wavenumbers). It may 
also be seen, more clearly in the inset, that at high wavenumbers (range F, k 3 32) 
the largest contributions come from triads with velocity modes in the ranges C and 
D (4 < p < 16). In this sense the dominant interactions are non-local, with a scale 
ratio of about 4 to 16 between the velocity and scalar modes. It should be noted, 
however, that the effects of the most highly non-local, or 'distant' interactions (with 
p in the ranges A and B) on the high-wavenumber modes are considerably weaker. 
Another striking observation is that spectral transfer caused by the velocity modes in 
the highest wavenumber band (range F) is virtually negligible. 

The relative strengths of couplings with different ranges of velocity modes require 
physical explanation. The process of forward spectral transfer represents the creation 
of scalar fluctuations at smaller scales as a result of advection by the velocity field. 
Such an effect would be weak if the velocity fluctuations have little energy (at the 
small scales), or if they are nearly uniform in space (at the largest scales) - in which 
case a blob of scalar would experience little deformation as it is transported in a 
bodily manner. Consequently, the most efficient spectral transfer at the small scales 
would be due to velocity modes that have both significant energy and dissipation. 
In the results of Yeung (1994) the range of scales was rather limited, such that the 
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peaks of the energy and dissipation spectra were separated only by a ratio of 2, and 
the two dominant velocity wavenumber bands (2 d p < 4 and 4 < p < 8) together 
contained 71% of the energy as well as 63% of the dissipation. However, in the 
present 12g3 results at Ri = 90 the spectral peaks are separated by a ratio of 7, and 
the strongest bands are 4 < p < 8 and 8 d p < 16, which now together contain 
only 28% of the energy but 59% of the dissipation. This comparison suggests that 
at high Reynolds numbers - extrapolated beyond the range of our simulations - 
the strongest contributions to spectral transfer will come from velocity scales in the 
neighbourhood of the peak of the dissipation spectrum (rather than the peak of the 
energy spectrum). Because this peak will still occur at a scale considerably larger 
than the Kolmogorov scale, at high wavenumbers these interactions are still expected 
to be moderately non-local. The dominance of moderately non-local interactions is 
also observed in 2563 data at RA = 160 with uniform mean scalar gradients. 

To characterize the spectral transfer in greater detail, we show in figure ~(u-c), 
for the same dataset in figure 4, the detailed triadic transfer contributions T$(klp,q) 
to V&(klp) for p in three different ranges (note the different plotting scales). In all 
three cases, and especially when p d q, we observe forward cascade behaviour, with 
the detailed transfers changing sign at the mid-point of the q interval, from negative 
(removal) when q > k to positive (addition) when k > q. The intensity and magnitude 
of the net effect, however, depend on the scale size of the velocity mode. For the 
largest eddies (1  < p < 2), there is nearly complete mutual cancellation between 
scalar transfers from the next larger scale range and to the next smaller scale range. 
The curves appear narrow at high wavenumbers because, for low p and large k ,  the 
triangle inequality restricts q to within a narrow range close to k .  

In figure 5(c) it may be seen that, when relatively high-wavenumber velocity 
modes are considered (in this case 16 < p < 32), the primary contributions at high 
wavenumbers are associated with triads where the other scalar mode q is also at 
high wavenumber. This indicates that local interactions at high wavenumbers are 
stronger than those that couple two scalar modes of disparate scales by a high- 
wavenumber velocity mode. However, as discussed above, transfer by small-scale 
velocity fluctuations is much smaller in magnitude than the effect of velocity modes 
near the peak of the dissipation spectrum. 

The results of Yeung (1994) indicated that the interaction between scalar modes is 
primarily a local forward cascade process in favour of the generation of smaller-scale 
scalar fluctuations. This conclusion is supported by the transfer function S,",(klq) 
for the 12g3 data at Ri = 90, shown in figure 6. These curves are distinguished by 
their spiky nature (which indicates localness of transfer), and their sign change in the 
middle of the q interval (which is consistent with a forward cascade). The behaviour 
of S i ( k l q )  also appears to be statistically robust, with little of the jitter apparent 
in the V$(kJp) data shown in figure 4. The only scalar modes that do not receive 
any significant input from the others are those at the top of the cascade: there the 
lowest-wavenumber modes (range A) primarily lose their spectral content to modes 
in ranges B and C. 

For a given range of scalar modes, the velocity modes that contribute the most 
to the forward cascade can be identified by plotting, for a given range of q, the 
contributions T,$(klp, q )  from different ranges of p to S,",(klq). Such plots (not shown) 
also suggest a dominant role of velocity modes near the peak of the dissipation 
spectrum, consistent with the discussions based on figures 4 and 5 above. 

A limitation in the interpretation of the triadic transfers T,.$(klp, q )  (and especially 
the associated quantities V,$(k(p), S,$(klq)) is that, because k ,  p and q are all grouped 
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FIGURE 5. Decomposition of the velocity mode transfer function VZ(k1p) (dashed line) for selected 
ranges of p in the data of figure 4: (a)  1 < p < 2 (range A), ( h )  4 < p < 8 (range C) and (c) 
16 < p < 32 (range E) into detailed transfer T$(k lp ,q)  contributions from scalar modes q in the 
logarithmically spaced ranges A-F. Note that the scales in (c) are magnified. 

into shells of finite thickness, not all triads within a given T$(klp,q) have the same 
scale separation. In other words, these quantities only provide indirect information 
on the degree of scale disparity within the triads. To address this shortcoming we 
adopt here as a direct measure of scale disparity the parameter s introduced by Zhou 
(1993a, b),  which is the ratio between the longest and shortest legs in a triad: 

The triadic interactions can then be re-grouped according to the disparity amongst 
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FIGURE 6. Decomposition of the scalar transfer spectrum function T$(k) (dashed line) into 
contributions S,",(klq) from scalar modes q in the logarithmically spaced ranges A-F (for the data 
of figure 4). 

the interacting scales in each triad as 

where taa(k'p',q') represents the effect of a single triad (with k' + p t  + q' = 0) on the 
scalar mode k'. 

The scale disparity parameter s has been used successfully in energy transfer studies 
to complement information derived from triadic interactions (Zhou, Yeung & Brasseur 
1996). Its use for scalar fields carries some ambiguity, since in principle it does not 
distinguish (for instance) between non-local triads in which the velocity mode is the 
shortest leg and those in which the shortest leg is a scalar mode. This is not a great 
difficulty, since we have already established that these two types of non-local triads 
behave very differently ~ for example, triads with a high-wavenumber velocity mode 
contribute very little to scalar transfer. More limiting, in practice, is the fact that 
unlike the triadic transfers T,",(klp, q )  which can be calculated efficiently in a pseudo- 
spectral manner, the calculation of T i ( k ,  s) requires a direct and time-consuming 
summation for the convolution integral in ( 3 ) .  In effect, a discrete summation must 
be carried out explicitly over all possible triads, which are classified according to their 
value of the parameter s, as written in (19). Since two legs of a triangle can be freely 
chosen, the number of triads, and hence CPU cost on an N 3  grid, scales as N6.  The 
total number of triads is found to be 6.9 billion when N = 64. In our case, the need 
for multiple realizations compounds the difficulty. 

Although the computation of T,",(k,s) is, for the reasons given above, very difficult, 
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FIGURE 7. Spectral transfer function T$(k,s)  for different half-octaves (1 < s < 4, ... 
16$ < s < 32) of the scale disparity parameter s ,  for a scalar with Sc = 1.0 in 643 simula- 
tions at R, = 38. 

we have nevertheless performed such calculations on a (coarser) 643 grid at R,, = 38, 
for the conditions of Yeung (1994). Averages from 11 realizations are shown in 
figure 7, for wavenumbers in the highest octave simulated (where the net transfer is 
primarily positive). Despite the significant statistical jitter, it may be seen that triads 
of both very low (curve A) and very high (curves H, I) scale disparity contribute little 
to the spectral transfer. For a wide range of wavenumbers the dominant interactions 
have a scale separation between 2 and 4 4  = 5.6. At higher wavenumbers the role of 
interactions with higher scale disparity increases somewhat, which reflects the action 
of the same group of velocity modes on scalar modes of increasing wavenumber. 
Overall, the T$(k, s) information obtained broadly confirms deductions drawn from 
the behaviour of triadic transfers. 

With the R, = 90 results at S c  = 1.0 without mean gradients as reference, we now 
present additional results to illustrate the effects of uniform mean gradients, as well 
as different Reynolds and Schmidt numbers, on the spectral transfer between scalar 
modes. When uniform mean gradients are imposed, attainment of a stationary state in 
the scalar field permits time averaging of the transfer spectra calculated from Fourier 
coefficients saved at regular time intervals within the simulations. Figure 8 shows the 
scalar transfer S$(klq) at the same Reynolds and Schmidt numbers as before, but with 
uniform mean gradients. The scalar variances have also been normalized to unity. 
Clearly, the basic conclusion of a local forward cascade remains unchanged. The most 
noticeable difference between figures 6 and 8 is that the spikes at lower wavenumbers 
in the latter have increased strength relative to those at high wavenumbers. This is the 
result of a scalar spectrum that itself has more low-wavenumber content, such that 



252 P. K .  Yeung 

I I I I I 
I I 1 I I I I I  I 1  I I 1 1  -3 

1 00 10' 

k 
FIGURE 8. Same as figure 6, but in the stationary state maintained by uniform 

mean scalar gradients. 

there is more scalar 'energy' available for transfer from the largest scales. These largest 
scales are maintained by mean gradient production through the scalar flux spectrum, 
which is heavily concentrated at the lowest wavenumbers because the energy of the 
flow is, in turn, maintained by forcing at the large scales. 

Figure 9 shows the scalar transfer at Ri = 160, from a 2563 simulation with 
mean gradients. At this Reynolds number the energy spectrum (see figure 1) has a 
recognizable, though limited, inertial range. However, the spectral transfer results 
appear very similar to those in figure 8 at RJ~ = 90, except that the cascade now 
extends to the highest wavenumbers that are present on the 2563 grid. The greater 
scale separation accompanying the increase in Reynolds number does cause a shift 
in the size of the dominant velocity modes coupling the scalar modes, in the manner 
discussed with reference to figure 4 earlier in this section. Because of statistical 
variability, quantitative statements on the velocity mode contributions V$(kIp) (not 
shown) require more realizations or a longer period for time averaging. 

The effects of Schmidt number are shown via the scalar transfer at Sc = 1/8 in 
figure 10, with the velocity field being the same as in figure 9. At this low Schmidt 
number the scalar field has, of course, a narrower range of scales, and in fact 
has more low-wavenumber content than the velocity field. Because of this spectral 
distribution, the transfer is most active at the large scales, tapering off quickly as 
higher wavenumbers are approached. 

All results in this subsection indicate a robust local forward cascade behaviour in 
which the scale size of the most active velocity modes varies with Reynolds number. 
Multi-scalar transfer characteristics are studied in the next two subsections. 
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FIGURE 9. Same as figure 8, but in a 256' simulation at R, = 160. 

FIGURE 10. Same as figure 9, but for a scalar with Schmidt number 1/8. 
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FIGURE 11. Coherency spectrum for scalars with Sc = 1/8 and 1 at different times in 1283 
simulations at Ri = 90 without mean scalar gradient. Lines A to F are respectively at t /TE  = 0.042, 
0.708, 5.66, 10.38, 15.09, and 19.81. For reference, the ratio between T E  and T~ is 11.8. 

4.2. Coherency evolution without mean gradients 
In differential diffusion without mean scalar gradients, it has been shown previously 
(Yeung & Pope 1993) that spectral transfer is directly responsible for the evolution 
of spectral coherency between scalars of different molecular diffusivities. We present 
below results on the evolution of coherency for 12g3 simulations in stationary isotropic 
turbulence at RL = 90, for three scalars at Schmidt numbers 1/8, 1/4 and 1 without 
mean scalar gradients. This is followed by an examination of the roles of different 
classes of triadic interactions in differential diffusion at different times. Except 
where stated otherwise, in each realization the scalars evolve from identical-valued 
initial conditions, being made equal to an instantaneous self-similar scalar field with 
s c  = 1.0. 

Figure 11 shows the coherency (defined as in (9)) between scalars at Sc = 1/8 and 
1 at different times, with data averaged over 14 realizations. Although the results 
differ quantitatively from the coherency spectrum used previously (see Appendix), the 
qualitative behaviour is the same as in the lower Reynolds number data of Yeung 
& Pope (1993). At early times the scalars become de-correlated very rapidly at the 
small scales. At later times the large scales de-correlate steadily. Although, because 
of computational expense, the new simulations (spanning 20 eddy-turnover times) 
are not long enough to achieve an asymptotic state, they do support the conclusion 
(Yeung & Pope 1993) that the scalars ultimately become completely de-correlated 
at all scales simultaneously. The statistical jitter seen at low wavenumbers is due to 
sampling limitations. 

As indicated in $2, spectral coherency may be represented (through (9) and (11)) 
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FIGURE 12. Sample PDFs of the difference in phase angle between scalars with Sc = 1/8 and 1 in 
Fourier space, for unit-thickness wavenumber shells centred on k = 3, 21, 39, 57 respectively (lines 
A to D). The data are extracted from 1283 simulations at R, = 90 without mean scalar gradient at 
( a )  t/TL = 0.708 and ( b )  t / T E  = 19.81. The dashed line indicates a uniform distribution. 

by the phase difference between two scalars in Fourier space, averaged over Fourier 
modes in specified wavenumber shells. Within each shell the probability distributions 
of the phase angles of each scalar, and the difference between them, can be estimated 
from the DNS data. In all cases we find that the phase angle of each scalar, 
considered separately (as Q,, Qb, etc.), is uniformly distributed. This is because the 
real and imaginary parts of $ , ( A )  can be viewed as, respectively, the Fourier cosine 
and sine transforms of the even and odd parts of the scalar fluctuation field as a 
function of the coordinates in physical space. Since sines and cosines are recoverable 
from each other by a simple shifting in physical space, and that in homogeneous 
turbulence such shifting is statistically immaterial, in our simulations the real and 
imaginary parts have essentially the same physical meaning and statistical properties. 
This implies that there is no net tendency for the scalar Fourier coefficient $,(k)  to be 
aligned (in the complex plane) relative to its real or imaginary parts in any particular 
way, so that the angle O,(k) must be uniformly distributed. 

In the two-scalar case, a high value of the coherency may be associated with 
small phase angles between the scalars, and as they become less correlated over time 
the phase difference can be expected to increase on average. The sample probability 
density function (PDF) of the phase angle between scalars at Sc = 1/8 and 1 is shown 
in figure 12 at 0.708 and 19.81 eddy-turnover times, corresponding to the coherency 
data (lines A and E) averaged over spectral shells in figure 11. The phase difference 
is taken in the principal branch -TC < 8, - OLj < n (but expressed in degrees in the 
figures). These PDFs are perfectly symmetric because of the conjugate symmetry 
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FIGURE 13. The coherency evolution spectrum hap@) for scalars at an early stage of differential 
diffusion (t/TE=0.042, or t / r 9  = 0.5) in 1283 simulations at RE. = 90 without mean scalar gradient. 
Three pairs of scalars are shown, with Schmidt numbers (1/8, 1/4) (A), (l/8, 1) (o), and (114, 1) 
(0). 

property of Fourier modes: for any given $#), there exists a J E ( - k )  = $:(k) with 
a phase angle of exactly the same magnitude but opposite in sign. Large statistical 
variability is, again, evident in the low-wavenumber shells which contain relatively 
few Fourier modes. 

At early times it may be seen from figure 12(a) that for low-wavenumber shells 
this phase angle PDF is narrow and sharply peaked at the origin, reflecting high 
coherency. At higher wavenumbers the PDFs are progressively wider and flatter, 
with increased probabilities for large phase differences. A spreading towards larger 
phase differences over time is also evident when comparing figures 12(a) and 12(b). 
It may be readily demonstrated that the phase difference between two completely 
uncorrelated and Gaussian distributed scalars takes on a uniform distribution, since 
then because of statistical independence there can be no preferential orientation of 
each scalar relative to the other. Consequently, the limiting state for the PDFs shown 
at asymptotically large times is a uniform distribution, given by the horizontal dashed 
line in the scales shown. This asymptote has not yet been reached at end of the 
simulation (20 eddy-turnover times), when the coherency for the highest wavenumber 
shell shown is about 0.125. 

It is clearly important to understand the processes responsible for the rapid de- 
correlation rate observed at the small scales at early times, which we investigate 
by studying the behaviour of the coherency evolution spectrum (15). To ensure 
an adequate ensemble size, we have performed a series of short-time simulations 
which allow us to capture the early-time phenomena at low computational cost. The 
coherency evolution spectra h,p(k) averaged from 34 realizations for three pairs of 
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FIGURE 14. Decomposition of the coherency evolution spectrum h,b(k)  (dashed line) into contribu- 
tions h$(kjp) from velocity modes in logarithmically spaced ranges A-F, for a pair of scalars with 
Sc = 1/8 and 1 at an early stage of differential diffusion (t/TE=0.042, or t / 7 ,  = 0.5) without mean 
gradient in 1283 simulations at R; = 90. 

scalars are shown in figure 13, at about 0.5 Kolmogorov time scales (7,) after they 
begin to evolve from identical-valued initial conditions. It is clear that at this time the 
scalars are de-correlating rapidly at the small scales, whereas the effects of differential 
diffusion have yet to reach the large scales. The de-correlation rate is largest in 
magnitude for the pair of scalars with S c  = 1/8 and 1. 

In figure 13 it may be seen that at time t / z ,  = 0.5 the Sc = (1/4, 1) pair of 
scalars has a weaker instantaneous de-correlation rate than the S c  = (1/8, 1/4) pair, 
although the former has a largest diffusivity ratio. As pointed out by a referee, this 
behaviour is a direct consequence of the diffusivity difference (which is larger for the 
latter pair) appearing as a factor in the source term in the transport equation for 
the mean-squared diffusivity difference (e.g. in Bilger & Dibble 1982). This source 
term dominates the dynamics of rapid de-correlation at early times, but becomes 
unimportant at later stages. 

An analysis given by Yeung & Pope (1993) indicates that the rate of de-correlation 
from identical initial conditions at early times (less than one Kolmogorov time scale) 
increases with the relative high-wavenumber content (expressed by a shape parameter) 
in the initial scalar spectrum. The effects of the choice of initial spectrum have been 
studied by performing a separate series of short-time simulations in which the scalars 
are initially made equal to a self-similar field with Sc = 1/8. In this case the initial 
spectrum has less high-wavenumber content than one with S c  = 1.0. Whereas many 
similarities are found, the de-correlation rates at early times are, as expected, less 
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FIGURE 15. Decomposition of the velocity-mode contribution h,vP(klp) (dashed line) to the coherency 
evolution spectrum for selected ranges of p in the data of figure 14: (a)  8 < p < 16 (range D) 
and (b)  32 < p < 64 (range F), into detailed contributions h z ( k l p , q )  from scalar modes q in the 
logarithmically spaced ranges A-F. The data are essentially zero at wavenumbers lower than the 
range shown. 

than in the data of figure 13. In addition, statistical variability is increased when the 
initial scalar spectrum has more low-wavenumber content. 

We now consider the contributions of different ranges of velocity and scalar modes 
to the coherency evolution spectra shown in figure 13, for scalars with Sc = 1/53 
and 1, without the mean gradient term in (17). Figure 14 shows the contributions 
of velocity modes, as h$(k(p) .  The interesting processes occur primarily at the small 
scales in the scalar fields. It may be seen that the largest scales (ranges A and B) in the 
velocity field contribute very little, whereas intermediate scales (ranges C and D) tend 
to promote coherency, and that the smallest scales (ranges E and F) tend to decrease 
coherency. The intermediate scales in the velocity field have been shown (see $4.1) to 
be strongly associated with the forward cascade in the scalar fields towards the high 
wavenumbers. Consequently, we may conclude that the forward cascade is coherent. 
This is a reasonable result because the spectral cascade extracts scalar fluctuations 
from lower wavenumbers, where the scalars are more strongly correlated, so that this 
spectral flux tends to make the scalars at higher wavenumber more coherent. Because 
the spectra of the scalars decrease with wavenumber, this spectral flux causes only a 
relatively small fractional rate of decrease of coherency at low wavenumbers, but a 
larger fractional rate of increase at high wavenumbers. This leads to the observation 
that, for intermediate values of p ,  h$(klp) has relatively shallow negative troughs but 
high positive peaks. 

Although it was established in $4.1 that high-wavenumber velocity modes contribute 
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FIGUR~ 16. Decomposition of the coherency evolution spectrum h,D(k) (dashed line) into contribu- 
tions h & ( k ( q )  from scalar modes 4 in the logarithmic ranges A-F (for the data of figure 14). 

very little to spectral transfer, it is seen in figure 14 that these modes are primarily 
responsible for rapid de-correlation between the scalars at the small scales. It is 
noteworthy that line F (32 < p < 64) begins to be significantly negative at roughly 
the mid-point of the interval 32 < k < 64 (in this case, mainly for p in the higher 
half of the interval F). This suggests that the de-correlating effect is associated with 
triads in which both k and p are at high wavenumber. but with the further constraint 
that p < k .  Velocity modes in range E show behaviour intermediate between those in 
ranges D and F. They are de-correlating for wavenumbers k within a ratio of about 
2 from the mid-point of range E, but show a coherent forward cascade effect at yet 
higher values of k .  

It is already clear from the observations above that the relative scale difference 
between velocity and scalar modes plays a pivotal role in determining whether the 
former tend to promote or reduce coherency. It may also be seen that for all ranges of 
p, h $ ( k ( p )  deviates appreciably from zero only when the wavenumber k is at least as 
high as the lower end of the p range. In other words, triads in which the velocity mode 
is the longest leg ( k , q  < p) have virtually no effect on the coherency development of 
the scalar modes forming the shorter legs. 

As in the case of single-scalar transfer, it is useful to examine the 'detailed' 
contributions hc;(klp, q )  from different ranges of scalar modes q to the quantity 
h,vli(kIp) for the ranges of p that are most active in coherency evolution. Figure 15 
shows such detailed breakdowns for velocity modes p in the octaves (a) 8 ,< p < 16 
and ( h )  32 d p < 64. For velocity modes in the range 8 < p < 16, the coherent forward 
cascade at high-wavenumbers is seen to be associated with high wavenumber scalar 
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FIGURE 17. Decomposition of the scalar-mode contribution hib(k)q) (dashed line) to the coherency 
evolution spectrum for selected ranges of q in the data of figure 14: (a )  8 6 q < 16 (range D), 
(b)  16 < q < 32 (range E) and (c) 32 < q < 64 (range F) into detailed contributions hfi(k(p,q) 
from velocity modes p in the logarithmically spaced ranges A-F. The data are essentially zero at 
wavenumbers lower than the range shown. 

modes (ranges E and F). This is consistent with the cascade being of the nature of local 
transfer by moderately non-local interactions. On the other hand, for velocity modes 
in the range 32 ,< p < 64, the de-correlating contributions are seen to be strongly 
associated with scalar modes of lower, although not much lower, wavenumber. In 
other words, the most strongly de-correlating triads are local between velocity and 
scalar modes, but moderately non-local within scalar modes. Furthermore, together 
with the condition p < k deduced from figure 14, these local triads have the property 
q < p < k.  That is, the velocity mode is intermediate in scale between two scalar 
modes. One interpretation of this result is that in these triads the velocity mode 
has qualitatively different effects on the two scalar modes, and so tend to affect 
them in ways that make the scalar modes (carrying different scalars) develop spectral 
content different from each other. Fully local triads where all three modes are at high 
wavenumber (curve F in figure 15b, hardly different from zero) without appreciable 
scale separation are found to have no significant effect on coherency evolution (nor, 
as seen in $4.1, any significant role in spectral transfer). 

The relative roles of scalar modes in coherency evolution are shown by a plot 
of the quantity h$(klq) in figure 16. Again, interest is primarily in the effects on 
high-wavenumber modes. A forward cascade contribution is seen from scalar modes 
q in the range F, which is strongly coherent for the smallest scales. De-correlating 
effects are observed for other scalar modes of lower wavenumber, and are particu- 
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larly strong (curve E) when the scale separation between the scalar modes is only 
moderate. 

For a more complete description, we compare in figure 17(a-c) the contributions 
h$(klp, q )  from different ranges of the velocity modes p to h$(klq)  for scalar modes 
q in the ranges that contribute most to coherency evolution. The dominant effect 
of intermediate-wavenumber scalar modes on the smallest scales is de-correlating. 
Consistent with the role suggested for triads of the type q < p < k above, the 
magnitude of line F in figure 17(a) increases rapidly when k increases past the mid- 
point of range F. For triads with 16 < p , q  < 32 (curve E in figure 17b) as the 
wavenumber k and hence scale separation is increased, an upturn in h$(klp,q)  is 
observed at k NN 45. This upturn marks the scale separation between velocity and 
scalar modes beyond which some triads begin to exhibit coherent forward cascade 
behaviour. Finally, in figure 17(c) it is seen that when the scalar modes are local 
relative to each other, a coherent forward cascade is the dominant process at high 
wavenumbers. 

The physical picture discussed above for coherency evolution at early times is that 
in which a coherent forward cascade is more than offset by a strong de-correlating 
tendency from moderately non-local triads in which the velocity mode is intermediate 
in scale between two scalar modes, so that the net result (as observed) is rapid de- 
correlation at the small scales. At large times, the observation that coherency evolves 
much more slowly (ultimately becoming quasi-steady) indicates that the different 
processes involved in coherency evolution become approximately in balance. The 
magnitude and spectral extent of both coherent and incoherent processes are also 
expected to be different from early times, because of the changes in the shapes of 
the scalar spectra and co-spectra that have occurred. However, because of greatly 
increased statistical variability, the details of coherency evolution at large times are 
much more difficult to determine with accuracy. 

Figures 18 and 19 show the contributions hyp(klp) and hfp(k)q) to the coherency 
evolution spectrum h,p(k) at 20 eddy-turnover times (after 8000 time steps) from 
14 realizations. The statistical jitter present is of a degree much greater than that 
observed at early times. Nevertheless, significant differences with the early-time 
results (figures 14 and 16) are evident. It may be seen that the net coherency 
evolution spectrum is now nearly flat on average, with small ensemble-averaged values 
within about k0.5 at all scales (in contrast with -13 at the highest wavenumbers at 
early times in figure 13). Whereas high-wavenumber velocity modes (range F) are 
still strongly de-correlating, they are now nearly counter-balanced by the combined 
coherent forward cascade effects of intermediate-scale velocity modes. In addition, 
coherent cascade effects are now no longer restricted to the smallest scales, but are 
felt over a wider wavenumber range. The effect of velocity modes 16 ,< p < 32 (range 
E) on scalar modes 32 < k < 64 (range F) is now primarily coherent. 

The increased importance of local forward cascade effects between scalar modes 
on the evolution of coherency at later times is also evident in figure 19. This forward 
cascade is now observable at intermediate as well as high wavenumbers. Both the 
correlating and de-correlating processes in coherency evolution may be considered to 
‘propagate’ in time from the small scales to the large scales, in an ‘inverse cascade’ 
manner. It is important to note that at later times the coherency spectrum has a 
definite negative slope over a wide range of wavenumbers. As a consequence, even at 
relatively low wavenumbers the forward spectral flux carries the scalars from a more 
coherent wavenumber range to a less coherent one, thereby tending to maintain the 
coherency at higher wavenumbers or at least reduce its rate of decrease. 
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FIGURE 18. Same as figure 14, but at a later time in differential diffusion ([ITE = 19.81), from 14 
realizations. To reduce clutter, small contributions from ranges A and B have been omitted. 
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FIGURE 19. Same as figure 16, but at a later time in differential diffusion (t/T,: = 19.81), 

from 14 realizations. 
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FIGURE 20. Coherency spectrum for scalars with Sc = 1/8 and 1 at different times in a 2563 
simulation at R, = 160 with uniform mean scalar gradients. Lines A to H are respectively at 
t / T ,  = 0.128, 0.640, 1.921, 5.122, 8.323, 11.5, 14.53 and 17.41. For reference, the ratio TE/7v  is 
18.77. 

On the other hand, de-correlating triads of the type q < p < k will have an 
appreciable impact only if the velocity mode p acts between two scalar modes of 
significantly different coherency. At later times, because the coherency spectrum is 
less steep, a significant difference in coherency between scalar modes k and q requires 
a greater scale separation between them. That is, for a given k such interactions are 
appreciable only for q at relatively low wavenumbers. As seen in figure 19, the largest 
negative contributions to h,p(k) at the high wavenumbers are now due to scalar modes 
in the range 4 < q < 8 (range C), which are at considerably lower wavenumber than 
the most dominant range 16 d q < 32 seen in the early-time results. In other words, 
the most actively de-correlating triadic interactions become more non-local between 
scalar modes with increasing time. 

The results of this subsection indicate that non-local interactions between scalar 
modes coupled by a velocity mode of intermediate scale are primarily responsible for 
the propagation of incoherency from the small scales to the large scales, although at 
later times this process is ultimately balanced by a local coherent forward cascade 
from the large scales to the small scales. It is natural to expect that this spectral 
picture, and hence the gross characteristics of differential diffusion, to be altered if 
a source of scalar fluctuations is present, in a manner that depends on its spectral 
content. The effects of such a source caused by a uniform mean scalar gradient are 
examined in the next subsection. 
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FIGURE 21. Sample PDFs of the difference in phase angle between scalars at S c  = 1/8 and 1, for 
wavenumber shells centered on k = 10, 35, 60, 85, and 110 respectively (lines A-E). The data are 
taken from the 2563 RJ. = 160 simulation with uniform mean scalar gradients at (a) t/TE = 0.128 
and ( b )  averaged over t /TE from 1.921 to 18.57. The dashed line indicates a uniform distribution. 

4.3. Coherency evolution with uniform mean gradients 
As mentioned before, when uniform mean scalar gradients are imposed, the scalar 
fluctuations attain a statistically stationary state in which their joint correlation 
coefficients are maintained at quasi-steady asymptotic values. Higher-resolution DNS 
data can be more conveniently obtained in this case, because stationarity permits time- 
averaging of spectral transfer characteristics from just one sufficiently long simulation. 
We present below a detailed characterization of coherency evolution with mean scalar 
gradient, through the analysis of DNS data at RA = 160 and 90 on 2563 and 1283 
grids respectively. The 2563 simulation spanned about 18.6 eddy-turnover times (with 
15 000 time steps, consuming about 63 CPU hours on each of 64 parallel processors). 
Three scalar fields at Schmidt numbers 1/8, 1/4 and 1 with the same uniform mean 
gradient (taken to be unity) were simulated. However, most of the results given 
below pertain to the pair with Sc = 1/8 and 1, which display the strongest effects of 
differential diffusion. 

The spectral coherency between the scalars at Sc = 1/8 and 1 at different times 
in the 2563 simulation is shown in figure 20. The turnups at the high-wavenumber 
end are symptomatic of imperfect numerical resolution (see §3), but fortunately are 
significant only in roughly the highest 10 wavenumber shells on the 2563 grid (i.e. 
for k > 110). It is clearly seen that, consistent with the attainment of a quasi- 
steady correlation coefficient, the coherency spectrum also becomes quasi-steady - 
after only about 1.9 eddy-turnover times. This observation allows spectral transfer 
characteristics, including coherency evolution, to be averaged over time from 1.9 
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FIGURE 22. Comparison of spectral transfer and mean gradient contributions to coherency contri- 
bution, hf’(k) (open symbols) versus rn,b(k) (closed symbols) for scalars with S c  = 1/8 and 1 in 
2563 R, = 160 simulation with uniform mean scalar gradients. The data are shown for times t/TE 
at  0.128 (triangles), 0.640 (circles) and averaged from 1.921 to 18.57 (squares). 

to 18.6 eddy-turnover times (until the end of the simulation). In contrast with 
results without mean gradients (figure ll), it is seen that the largest scales remain 
almost perfectly correlated at all times. In other words, effects of differential diffusion 
originating from the high-wavenumber end now fail to reach the lowest wavenumbers. 
Further analysis below shows that this is due to the presence of a coherent source 
of scalar fluctuations, as well as a strengthened forward cascade counteracting the 
inverse cascade of incoherency propagation from the small scales. 

The results of figure 20 suggest that in Fourier space the scalars remain largely 
in phase with each other at the low wavenumbers. The distributions of their phase 
(angle) difference within selected wavenumber shells at early and later times are shown 
in figure 21(a,b). At the early time of t/z,? = 2.4 (or t /TE  = 0.128, corresponding 
to line A in figure 20), these distributions are clearly sharply peaked. At later 
times (figure 21b), where we have performed time averaging as discussed above, 
at low wavenumbers this distribution is still heavily concentrated around zero. At 
higher wavenumbers the phase difference distribution becomes more spread out, 
but, unlike the case of no mean scalar gradients, it does not approach the uniform 
distribution that would result if the scalars were to become completely de-correlated 
(and independent). 

To understand how the presence of mean gradients causes a quasi-steady coherency 
spectrum to be maintained, we study both the direct mean-gradient contribution 
rn,b(k), and the modified structure of the nonlinear spectral transfer term h F ( k ) .  The 
fact that the coherency spectrum initially decreases suggests that mean gradient effects 
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FIGURE 23. Decomposition of the spectral transfer contributions h T ( k )  (dashed line) to the 
coherency evolution spectrum into contributions h$(klp)  from velocity modes in logarithmically 
spaced ranges A-G, for a pair of scalars with Sc = 1/8 and 1 in the stationarity period (averaged 
from t /TE  = 1.921 to 18.57) in differential diffusion with uniform mean gradients in a 2563 
simulation at Ri = 160. 

are initially weak, although their importance grows in time. Physically, mean gradient 
effects are associated with the large scales in the velocity field (which account for most 
of the production of scalar fluctuations), whereas de-correlation at high wavenumbers 
is primarily caused by (as seen in $4.2) the action of small scales in the velocity field. 
Consequently, at early times the latter effect having a shorter characteristic time is 
felt sooner than the mean gradient effects which have longer time scales. 

Figure 22 shows the relative roles of hFk(k) and rnaa(k), at early times corresponding 
to lines A and B in figure 20, and at later times by time averaging. Because of limited 
resolution, the behaviour at the highest wavenumbers k > 110 is best regarded as 
numerically spurious. At the earliest time shown (O.128TE, or 2.4 z?), the mean 
gradient contribution is seen to be coherent, but much weaker than the overall 
de-correlating effect of nonlinear triadic interactions. Over time, the mean gradient 
contribution remains coherent, with magnitude first increasing and then decreasing 
in time. Despite substantial statistical jitter, the spectral transfer term is seen to be 
de-correlating at high wavenumbers. The relative strength of this de-correlation is 
especially strong at early times, but decreases steadily with time. At later times we find, 
consistent with the attainment of statistical stationarity in the coherency spectrum, an 
approximate balance at the small scales between coherent mean gradient production 
and incoherent spectral transfer contributions. 

The manner in which the spectral transfer contributions to the evolution of co- 
herency are modified by uniform mean gradients is of great interest, especially in 
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FIGURE 24. Decomposition of the velocity-mode contribution Izrp(klp) (dashed line) to the coherency 
evolution spectrum for selected ranges of p in the data of figure 23: (a) 16 d p < 32 (range E), 
( h )  64 d p < 128 (range G), into detailed contributions h$(klp,q) from scalar modes q in the 
logarithmically spaced ranges A-G. The data are essentially zero at wavenumbers lower than the 
range shown. 

the later time period when stationarity is attained. Figure 23 shows the transfer 
contributions h:&klp) from velocity modes for a pair of scalars at Sc = 1/8 and 1 
in the stationary state. At high wavenumbers, the total transfer term h t b ( k )  (dashed 
line, partly hidden) is seen to be the net result of strong mutual cancellation between 
negative (de-correlating) contributions from velocity modes in the highest octave and 
positive (coherent) contributions from the rest of velocity modes at lower wavenum- 
ber. Contributions from lower-wavenumber velocity modes p (up to range E) are 
essentially entirely coherent for all wavenumbers k ,  increasing in magnitude with k .  
Velocity modes p in the highest octave (range G) have no significant effect on scalar 
modes of lower wavenumber (for k in range F or lower, when the velocity mode is 
likely to be the longest leg in the triads), but have a de-correlating effect on high- 
wavenumber scalar modes that increases in magnitude rapidly with wavenumber. 
Velocity modes in range F display intermediate behaviour : they are de-correlating 
when the scale ratio between p and k is about 3 or less, but correlating as the scale 
ratio increases further with wavenumber. The strongest coherent contributions come 
from only moderately non-local ( p  in ranges E and F) rather than highly non-local 
interactions ( p  in ranges A to C). These observations are qualitatively consistent with 
the analysis presented in 64.2 for the case of no mean scalar gradients. However, the 
presence of mean gradients appears to enhance the relative strength of the coherent 
contributions from velocity modes of wavenumber lower than the scalar modes. 

More detailed information on transfer contributions from the most strongly corre- 
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FIGURE 25. Decomposition of the spectral transfer contributions h F ( k )  (dashed line) to the 
coherency evolution spectrum into contributions h:p(klq) from scalar modes q in the logarithmic 
ranges A-G (for the data of figure 23). 

lating (range E) and most strongly decorrelating (range G) octave of velocity modes 
is given in figure 24(a,b) via the functions h$(klp,q) for different ranges of the 
other scalar mode q in the triads. It is clearly seen in figure 24(a) that the effect 
of the correlating triads is a forward cascade, which tends to decrease coherency at 
lower wavenumbers but increase coherency at higher wavenumbers. For example, the 
negative loop in line F (32 < p < 64) represents the effect on scalars at wavenumber 
k when p < k < q, whereas the positive loop indicates the effect on k for p < q < k .  
Furthermore, as seen earlier in this paper, the forward cascade is relatively local 
between the scalar modes. 

It may be seen in figure 24(b) that de-correlating effects at high wavenumbers k 
are primarily caused by triads in which q < p < k ,  with the velocity mode being 
intermediate in scale. The strongest contributions for k in range G are associated 
with the other scalar mode q in range D, indicating that the de-correlating triads are 
moderately, but not strongly, non-local between the scalar modes q and k .  

Figure 25 shows the transfer contributions h$(klq) for different ranges of scalar 
modes q. The presence of a coherent local forward cascade between scalar modes is 
clearly seen (lines E, F and G). Whereas some evidence of a similar cascade may be 
found in later-time results without mean gradients (figure 19), when mean gradients 
are present the observed forward cascade behaviour is much more pronounced and 
well-maintained. The localness of this cascade is also well demonstrated : for example, 
at sufficiently high wavenumbers when the scale disparity between the scalar modes q 
and k is greater than about 4, line E ceases to be positive (in fact, becoming strongly 
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FIGURE 26. Decomposition of the scalar-mode contribution h&(klq)  (dashed line) to the coherency 
evolution spectrum for selected ranges of q in the data of figure 23: (a)  8 < q < 16 (range D), 
( b )  32 < q < 64 (range F), into detailed contributions h f L ( k i p , q )  from velocity modes p in the 
logarithmically spaced ranges A-G. The data are essential& zero at wavenumbers lower than the 
range shown. 

de-correlating). Negative values of hip(k lq)  at high wavenumbers associated with q in 
the range D correspond to the de-correlating triads shown in figure 24(b). 

Detailed triadic contributions to h$(klq)  for q in the most actively de-correlating 
and correlating ranges (D and F respectively) are shown in figure 26(u, b). The former 
indicates that the de-correlating triads are formed from non-local interactions between 
scalar modes of disparate scales (with a ratio of 8 between ranges D and G) coupled 
to a high-wavenumber velocity mode. At the same time, figure 26(b) confirms that 
the coherent forward cascade is caused by local interactions between scalar modes of 
similar size (ranges F and G) coupled by a relatively low-wavenumber velocity mode 
(ranges D and E). 

In addition to understanding the nature of spectral transfer in the stationary state 
(as above), we are interested in obtaining an estimate of the time it takes for the 
mean gradient modifications of multi-scalar spectral transfer to become significant. 
This requires examination of early-time results, which in turn requires ensemble 
averaging over multiple realizations, since time averaging is no longer applicable. To 
limit computational expense, we consider early-time results from 12S3 simulations 
at RA = 90, with 17 realizations. The breakdowns of transfer contributions h,Vp(klp) 
(for velocity modes) and h&(klq) (for scalar modes) are shown in figures 27 and 28 
respectively, at 0.9 eddy-turnover times for two scalars at Sc = 1/8 and 1. It is 
clear that both correlating and de-correlating effects have the same trends as in the 
stationary-state results of figures 23 and 25. The differences are a matter of degree, 
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FIGURE 27. Decomposition of the spectral transfer contributions h t b ( k )  (dashed line) to the 
coherency evolution spectrum into contributions h$(kJp) from velocity modes in logarithmically 
spaced ranges A-F, for a pair of scalars with Sc = 1/8 and 1 at an early-time ( ~ / T E  = 0.9) in 
differential diffusion with uniform mean gradients in a 1283 simulation at Rl = 90. 

in that at early times coherent forward cascade effects are not yet as strong as the 
de-correlating effects of high-wavenumber velocity modes, so that the overall transfer 
contribution is negative at high wavenumbers. It is found that the negative transfer 
h F ( k )  in this particular dataset is nearly balanced by a coherent mean gradient 
contribution rn,b(k). Together with the results of figure 20, these observations indicate 
that the characteristic time for mean gradient effects to be felt strongly is on the order 
of the eddy-turnover time, which is a time scale of the large-scale motions. This is 
perhaps not surprising, since mean gradient effects are a result of velocity fluctuations 
(with the eddy-turnover time as characteristic time scale) acting on the uniform mean 
scalar gradients. 

Because the presence of uniform mean scalar gradients constitutes a source of 
scalar fluctuations with the same spectral form as the velocity fluctuations, it may 
be expected that some aspects of differential diffusion viewed in Fourier space would 
be sensitive to scale differences between velocity and scalar fields. In particular, 
for a low-Schmidt-number scalar the spectral peak of the source will be located at a 
wavenumber higher than that of the scalar fluctuations. Whereas all later-time spectral 
transfer characteristics are similar for all three pairs of scalars in the simulations, we 
find that at early times the pair with Sc = 1/8 and 1/4 (both significantly less than 
unity) behave differently. For this pair of scalars, at the time ( t /TE = 0.9) of the 
results of figures 27 and 28 it is found that at high wavenumbers rn,p(k) is negative, 
whereas h?(k) is positive. 

Whereas the de-correlating nature of mean gradients at early times for highly 
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FIGURE 28. Decomposition of the spectral transfer contributions h $ - ( k )  (dashed line) to the 
coherency evolution spectrum into contributions h; ' f i (k lq)  from scalar modes 9 in the logarithmic 
ranges A-F (for the data of figure 27). 

diffusive scalars may seem somewhat surprising, it can be traced to differences in 
spectral shape. Consider, for simplicity, the case in which VQz = VQ,, and let & 
be the more diffusive scalar with lower Schmidt number. The mean gradient effect 
rn,p(k) as given in (14) consists of four terms in its numerator, listed here in the order 
(1) exoeugflir, (11) --erregfiflr, (111) ergeg/ifr,, (IV) --exreicbfLp. When the mean gradients 
are positive the scalar flux contributions J l u  and f l p  are negative on average. Because 
Scg > Scar and especially if they differ greatly, at high wavenumbers one expects 
I f l g l  > I f l r /  and (of course) epli > err on average. Furthermore, the ratio between 
the spectra of different scalars is found to be greater than the ratio between their 
corresponding flux spectra. Consequently, in general, terms I11 (>I) and IV ( 4 1 )  
provide the strongest positive and negative contributions respectively. For scalars 
with S c  1/8 and 1/4 it is found that the spectral shapes are such that the overall 
mean gradient effect r n , ~ ( k )  is nearly zero at most wavenumbers, and slightly negative 
at the highest few wavenumber shells. For the other two pairs ( l / S  and 1; 1/4 
and 1) the mean gradient contribution is definitely positive, although dropping off in 
magnitude at the highest-wavenumber shells. 

5. Conclusions 
Detailed analyses of spectral transfer by triadic interactions have been performed 

on direct numerical simulation data to investigate the spectral mechanisms of the 
differential diffusion of multiple scalars. Simulations using a massively parallel 
computer code have been carried out for scalars with Schmidt numbers ( S c )  from 
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1/8 to 1 in forced stationary isotropic turbulence, with Taylor-scale Reynolds number 
Rj. = 90 on an 1283 grid without mean scalar gradients, and R, = 160 on a 2563 
grid with uniform mean scalar gradients. The R, = 160 velocity fields possess a 
short inertial range in the energy spectrum, and contain a range of scales comparable 
to that found in an axisymmetric jet of mean flow Reynolds number about 34000 
based on the exit diameter. Appropriate evolution equations have been derived in 
order to understand the roles of different processes in the development of the spectral 
coherency between different scalars, which measures their phase alignment in Fourier 
space. 

The conclusions of this work are summarized below, corresponding to the questions 
raised at the beginning of $4. 

First, a recent study of single-scalar spectral transfer (Yeung 1994) has been 
extended to higher Reynolds number, a wide range of Schmidt numbers, and scalar 
fields generated by velocity fluctuations acting upon uniform mean scalar gradients. 
All results indicate, as before, a robust local forward cascade behaviour in which 
scalar fluctuations are generated at successively smaller scales. The wider range of 
scales present at higher Reynolds number allows us to distinguish between the effects 
of triads of varying degrees of locality-non-locality. The transfer is found to be 
moderately non-local between a scalar mode at wavenumber k and the velocity mode 
p that provides the coupling between two scalar modes in a triad in wavenumber 
space. This conclusion is supported by an analysis based on the scale disparity 
parameter proposed by Zhou (1993a,b) for energy transfer. It is suggested that 
the velocity scales contributing most to the forward cascade are located near the 
peak of the dissipation spectrum. This physical picture is not greatly altered by low 
Schmidt number or uniform mean gradients. However in these cases there is more 
transfer activity at lower wavenumbers, primarily because the scalar spectrum is more 
concentrated at the lower wavenumbers, due to higher molecular diffusivity or mean 
gradient production at the large scales. 

Second, the rapid de-correlation observed at the small scales in differential diffusion 
at early times is found to be primarily a result of the action of small scales in the 
velocity field - which, however, contribute little to the spectral transfer of each scalar. 
For high-wavenumber scalar modes k ,  the most strongly de-correlating triads are 
of the type 4 < p < k ,  in which the scalar mode k is coupled to another mode 
q via a velocity mode p that is intermediate in scale, and especially so when the 
scale separation between k and q is moderately non-local (around k / q  rn 4 at 0.5 
Kolmogorov time scales in the simulations at Ri. = 90). These de-correlating triads 
are counteracted by a coherent local forward cascade represented by triads of the type 
p < q < k ,  in which q is close in magnitude to k ,  and the separation between p and k is 
(consistent with single-scalar results) moderately non-local. This spectral flux carries 
relatively coherent scalar fluctuations towards higher wavenumbers, and is particularly 
effective when the coherency spectrum decreases steeply with wavenumber. However, 
at early times in differential diffusion this coherent cascade effect is weaker than the 
de-correlating effect of triads of the type q < p < k .  This scenario of fundamentally 
different types of different triadic interactions being responsible for the spectral 
cascade of the scalars and the spectral propagation of differential diffusion is consistent 
with the work of Kerstein, Cremer & McMurtry (1995). 

Third, in the absence of mean scalar gradients, despite considerable statistical 
variability, we find that the slow rate of change of coherency at later times is caused 
by an approximate balance between triads of the type q < p < k (which continue to 
be strongly de-correlating) and those of the type p < q < k (whose coherent cascade 
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effect grows in relative strength with time). With a coherency spectrum that now 
exhibits a definite negative slope across a wide range of scales, both opposing effects 
above are felt at intermediate as well as high wavenumbers. The de-correlating triadic 
interactions become more non-local, because a wider scale separation between modes 
k and q is now required for them to exhibit a significant difference in coherency. 

Finally, production by uniform mean gradients (primarily at the large scales) alters 
coherency development both directly through an explicit contribution to the coherency 
evolution equation and indirectly via influencing the spectral transfer contributions. 
A statistically stationary state is observed for the coherency spectrum, as a result 
of a balance between a coherent mean gradient production term and a spectral 
transfer term that is de-correlating overall, albeit of relatively small magnitude. The 
maintenance of high coherency at the large scales by mean gradients in the stationary 
state is consistent with the mixing-layer measurements of Li et al. (1993), which 
showed that, especially near the centreline, the scalars remain highly coherent in 
the frequency domain except at very high frequencies. The coherent local forward 
cascade effect is well maintained by the mean gradients, and much more pronounced 
than that in the case of no mean scalar gradients. Strong mutual cancellation is 
observed between correlating and de-correlating triads. Such triads are still of the 
types p < q < k and q < p < k respectively, and characterized by a moderate degree 
of non-localness. Mean gradient effects are strongly felt within a characteristic time 
of about 1 eddy-turnover time. Transient effects that can be traced to differences in 
spectral shape are observed for scalar pairs oi’ low Schmidt number. 

In summary, this paper provides a quantitative description of the spectral mecha- 
nisms of differential diffusion in turbulent flow, in which the relative spectral content 
and scale separation among velocity and multiple scalar fields play a crucial role. 
Production by uniform mean gradients can be viewed as just one (but important) 
example of a source of scalar fluctuations, with the same spectral content as the 
velocity fields. Many interesting questions remain in the general case in which scalar 
fluctuations may be added or removed at different scales. The effects of such scale- 
dependent production or destruction terms due to chemical processes would be of 
special interest in the study of differential diffusion of reacting scalars, which is itself a 
problem of great practical significance in turbulent combustion. The physical under- 
standing achieved for passive, inert scalars in this work is expected to be important 
for future efforts directed at the more general reacting case. 
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Appendix. Computation of coherency from DNS data 
In direct numerical simulations of isotropic turbulence with a discrete set of 

Fourier modes, it is customary to collect numerically computed spectra into spherical 



274 P. K.  Yeung 

wavenumber shells of finite thickness Ak (usually taken as unity for convenience). 
We demonstrate in this Appendix that the precise manner in which this practice is 
carried out can have non-trivial effects on the representation of the spectral coherency 
between multiple scalars. 

The definition adopted for the spectral coherency in this paper is given by (9), 
which may also be as written as 

where within each realization the coherency is a measure of the average degree of 
alignment between the different scalars among Fourier modes in a given wavenumber 
shell. On the other hand, if we define the coherency via the usual spectra and co- 
spectra (which are pre-collected into the wavenumber shells, as E$(k) = Chk (e,B(k’)), 
etc.), we obtain the quantity 

which was used previously in Yeung & Pope (1993) and Yeung & Moseley (1995a). 
The two definitions above, which we characterize as ‘modal’ and ‘shelIwise’ respec- 

tively, are not equivalent. In particular, whereas two Fourier modes within a given 
shell with the same phase difference between the scalars J J k ’ )  and $p(k’) contribute 
equally to p,p(k), their contributions to the numerator of p z B ( k )  will be weighted by 
the magnitude of their relative spectral content. Except perhaps in the lowest couple 
of wavenumber shells, the decrease of the spectra and co-spectra with wavenumber 
implies that within a given shell, modes of lower k’ will contribute more heavily since 
they have more spectral content than modes of slightly higher k’ in the same shell. 
Furthermore, because in general scalar fluctuations at  larger scales are less strongly 
affected by differential diffusion (i.e. are less strongly de-correlated), the contributions 
from these modes of lower k’ are likely to be more coherent. Consequently, whereas 
the two definitions may give qualitatively similar results, one may expect p : B ( k )  to 
be higher than p,p(k)  in most situations, especially when the coherency spectrum 
decreases steeply with wavenumber. On the other hand, if the coherency spectrum is 
relatively flat the difference in coherency between modes in a given shell would be 
less significant, so that the difference between p E p ( k )  and pEp(k) should be much less. 

To illustrate these arguments it is sufficient to compare results from a single 643 
realization without mean gradients. Figure 29 shows, using different symboIs, the 
quantities pap(k)  and p&(k)  at an early time when the coherency spectrum is relatively 
steep, and at a later time when the coherency spectrum is relatively flat. It is clearly 
seen, as argued above, that in general &(k)  is higher than p,B(k), especially at  
high wavenumbers in the early time period when coherency decreases steeply. Also 
shown for comparison is the quantity Pap(k),  which is a degenerate form of p r g ( k )  
in which only modes of wavenumber magnitude exactly equal to k are considered 
(in effect, with Ak = 0). In this way, ;ap(k)  provides, in principle, an estimation 
of coherency without the numerical artifact of finite-thickness wavenumber shells. 
However, since in the simulations the number of such Fourier modes of the same 
wavenumber magnitude is small, the computed fiaB(k) is, as may be seen, very noisy. 
A reasonable smoothing is provided by pap(k ) ,  through the process of averaging over 
modes of approximately the same scale size within the spectral shell. Consequently, 
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FIGURE 29. Comparison of three definitions of coherency spectrum computed from DNS data: p,p(k) 
(triangles), ,o18(kj (circles), and aS,l (k)  (squares) in a 643 simulation: at an early time t /TE = 2.5 
when pzp = 0.867 (open symbols) and a later time t / T E  = 25 when pxa = 0.182 (closed symbols). 

of the three quantities shown, the modal definition p,p(k) appears to provide the best 
representation of coherency as a function of scale, and is therefore adopted in this 
paper. 

The later-time data shown in figure 29 also support the argument that when the 
coherency spectrum is relatively flat (which occurs at large times in the absence of 
mean gradients), the difference between p U p ( k )  and p: ,{(k)  should be relatively small. 
Increased statistical variability at later times is also evident, especially for $,p(k) at 
low wavenumbers. 

Besides taking on different numerical values, the quantities p,p(k) and p i p ( k )  do 
not satisfy the same evolution equation. The evolution of p,,j(k) is given by (12)-(15), 
which are based on averaging the rates of change of coherency over the modes within 
each wavenumber shell. In particular, coherency evolution at a single Fourier mode 
is given by ( 13 j, which is characterized by the absence of molecular diffusivities. 
However, this equation does not readily generalize to the shellwise coherency pzg(k) ,  
because - as may be shown by straightforward algebra ~ complete cancellation of 
molecular terms in i ip&(k) /? t  would require the quantity 

Ak Ak Ak Ak Ak Ak Ak Ak Ak 

to vanish. For any finite shell thickness Ak a complete cancellation is not pos- 
sible, because the wavenumber magnitude k varies within each shell, so that, for 
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FIGURE 30. Comparison of coherency evolution spectra according to the modal (open symbols) and 
shellwise (closed symbols) definitions, for three pairs of scalars at Sc = 1/8 and 1/4 (triangles); 
1/8 and 1 (circles); and 1/4 and 1 (squares), from ensemble-averaged early-time results in 1283 
simulations. 

example, 

Ak Ak Ak Ak 

In other words, the exact expression for d p i 8 ( k ) / d t  (in the absence of mean gradients) 
contains some residual molecular diffusivity effects arising from the use of a finite 
(arbitrary) shell thickness in collecting the spectra. This limitation provides additional 
justification for adopting the 'modal' definition p,p(k) instead. 

On the other hand, numerical tests suggest that the discrepancy due to imperfect 
cancellation of molecular terms in d p i 8 ( k ) / d t  is small in practice, except at low 
wavenumbers where the shell thickness ( A k )  is a significant fraction of the shell 
radius ( k ) .  At early times, the coherency evolution rate at low wavenumbers is itself 
expected to be small. Consequently, a good (albeit inexact) approximation of the 
nonlinear part of d p L p ( k ) / d t  is still given by 

(where the upper-case symbols represent sums over spectral shells). 
The evolution rates of p,p(k) and p i p ( k )  are compared in figure 30 for 12S3 

simulations at early times and without mean scalar gradients. The data shown for 
(the nonlinear part of) d p , p ( k ) / d t  are the same as in figure 13. It is seen that 
the shellwise coherency decreases more slowly, consistent with the observation of 
pap(k)  > p&(k)  in the early-time results in figure 29. The shellwise data are also 
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much smoother, which indicates that some statistical variability is removed when the 
spectra and co-spectra are summed over the Fourier modes in each shell. 
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